Bibliography

[1]   T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., (Upper Saddle River, N.J.: Prentice Hall, 2002).

[2]   A. Molisch, Wireless Communications, (Chichester, UK: IEEE press - John Wiley, 2005).

[3]   A. Goldsmith, Wireless Communications, (New York: Cambridge University Press, 2005).

[4]   D. Tse, P. Viswanath, Fundamentals of Wireless Communications, (New York: Cambridge University Press, 2005).

[5]   W.C.Y.  Lee, Lee’s Essentials of Wireless Communications, (New York: McGraw-Hill, 2001).

[6]   W.C.Y. Lee, Wireless and Cellular Communications, 3rd Ed., (McGraw Hill, Oct 2005).

[7]   V.K. Garg, Wireless Communications and Networking, (San Francisco: Morgan-Kaufmann, 2007).

[8]   J.G. Proakis, Digital Communications, 4th Ed., (McGraw Hill, Dec 2001).

[9]   J. Liberti, T. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, (Upper Saddle River, N.J.: Prentice Hall, 1999).

[10]   Code of Federal Regulations, Title 47. [Online] www.fcc.gov/general/rules-regulations-title-47

[11]   FCC 12-118, ET Docket No. 12-268 “Notice of Proposed Rulemaking - In the Matter of Expanding the Economic and Innovation Opportunities of Spectrum Through Incentive Auctions”, released October 2, 2012.

[12]   FCC 13-22, ET Docket No. 13-49 “Update: Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band”, released February 20, 2013.

[13]   FCC 15-47, “Amendment of the Commission?s Rules with Regard to Commercial Operations in the 3550-3650 MHz Band”, September 1, 2015.

[14]   FCC 16-89, “Use of Spectrum Bands Above 24 GHz For Mobile Radio Services, et al”, released July 14, 2016.

[15]   C. Shannon, “A Mathematical Theory of Communication” Bell Syst. Tech. J., vol. 27, pp. 379-423, July 1948, and pp. 623-656, October 1948. [online] at http://www3.alcatel-lucent.com/bstj/

[16]   OET bulletin no. 63, “Understanding the FCC Regulations for Low-Power, Non-Licensed Transmitters”, Oct. 1993. [Online] http://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/ bulletins/oet63/oet63rev.pdf

Radio propagation

[17]   C. Chrysanthou, H.L. Bertoni, “Variability of sector averaged signals for UHF propagation in cities”, in IEEE Transactions on Vehicular Technology, Volume 39, Issue 4, pp. 352–358, November 1990.

[18]   L.J. Greenstein, V. Erceg, Y.S. Yeh, M.V. Clark, “A new path-gain/delay-spread propagation model for digital cellular channels”, in IEEE Transactions on Vehicular Technology, Volume 46, Issue 2, pp. 477–485, May 1997

[19]   H.L. Bertoni, Radio Propagation for Modern Wireless Systems, (Upper Saddle River, NJ: Prentice-Hall Inc., 2000).

[20]   P. Papazian, M. Cotton, “Relative Propagation Impairments Between 430 MHz and 5750 MHz for Mobile Communication Systems in Urban Environments”, NTIA Report TR-04-407, December 2003.

[21]   Y. Okumura, E. Ohmori, T. Kawano, K. Fukuda, “Field strength and its variability in VHF and UHF Land-Mobile radio service”, in Review of the Electrical Communication Laboratory, Volume 16, No. 9-10, pp. 825–873, September-October 1968.

[22]   M. Hata, “Empirical Formula for Propagation Loss in Land Mobile Radio Services”, in IEEE Transactions on Vehicular Technology, Volume 29, No 3, pp. 317–325, August 1980.

[23]   European Cooperation in the Field of Scientific and Technical Research, EURO-COST 231, “Urban Transmission Loss Models for Mobile Radio in the 900 and 1800 MHz Bands”, COST 231 TD (91) 73. Rev 2, The Hague, September 1991.

[24]   European Cooperation in the Field of Scientific and Technical Research, EURO-COST 231, “Digital Mobile Radio Towards Future Generation Systems”, COST 231 Final report. [Online] http://www.lx.it.pt/cost231/ .

[25]   European Cooperation in the Field of Scientific and Technical Research, EURO-COST 259, “European Co-operation in Mobile Radio Research”, COST 259 Final Report, 2001. http://www.lx.it.pt/cost259/

[26]   European Cooperation in the Field of Scientific and Technical Research, EURO-COST 273, “Towards Mobile Broadband Multimedia Communications”, COST 273 Final Report, 2006. (MIMO Channel Model available online: http://www.ftw.at/cost273)

[27]   COST2100 project. [Online] www.cost2100.org

[28]   T. Rappaport, Heath, Daniels, & Murdock, Millimeter Wave Wireless Communications, (Prentice Hall, 2014).

[29]   NYU Wireless [online]: http://wireless.engineering.nyu.edu

[30]   F. Ikegami, S. Yoshida, T. Takeuchi, M. Umehira, “Propagation Factors Controlling Mean Field Strength on Urban Streets”, in IEEE Transactions on Antennas & Propagation, Volume AP-32, pp. 822–829, 1984.

[31]   J. Walfish, H.L. Bertoni, “A theoretical model of UHF propagation in urban environment”, in IEEE Transactions on Antennas & Propagation, Volume AP- 36, pp. 1788–1796, December 1988.

[32]   V. Erceg, L.J. Greenstein, S.Y. Tjandra, S.R. Parkoff, A. Gupta, B. Kulic, A.A. Julius, R. Bianchi, “An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments”, in IEEE Journal on Selected Areas in Communications, Volume 17, No. 7, July 1999.

[33]   IEEE 802.16 Broadband Wireless Access Working Group, “Channel Models for Fixed Wireless Applications”, contribution to 802.16a, 2003. [Online] http://wirelessman.org/tga/docs/80216a-03_01.pdf.

[34]   IEEE 802.11-03/940r4, “TGn Channel Models”, contribution to 802.11n, 2006.

[35]   IEEE 802.11-09/0308r3, “TGac Channel Models”, 2009.

[36]   IEEE 802.11-09/0569r0, “TGac Channel Model Addendum Supporting Material”, contribution to 802.11ac, 2009.

[37]   Y. Oda, R. Tsuchihashi, K. Tsunekawa, M. Hata, “Measured path loss and multipath propagation characteristics in UHF and microwave frequency bands for urban mobile communications” Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd Volume 1, 6-9 May 2001 pp. 337-341 vol.1.

[38]   3GPP TR 25.996, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Release 11) [Online] www.3gpp.org/ftp/specs/archive/25_series/25.996/

[39]   I. Kotzer, “Extended Intra-Vehicle Channel Model”, 11-14/0365r0 contribution (General Motors) to 802.11HEW SG (Beijing, March 2014).

[40]   T.-S. Chu and L.J. Greenstein, “A quantification of link budget differences between the cellular and PCS bands”, in IEEE Transactions on Vehicular Technology, Volume 48, No. 1, pp. 60–65, January 1999.

[41]   T.-S. Chu, L.J. Greenstein, “A Semi-Empirical Representation of Antenna Diversity Gain at Cellular and PCS Base Stations”, in IEEE Trans. On Communications, Vol. 45, June 1997, pp. 644-646.

[42]   A.G. Dimitriou, G.D. Seriadis, “Microcellular Propagation Prediction Model Based on a Geometric Progression Approximation-Process”, in IEEE Trans. On Antennas and Propagation, Vol. 55, March 2007, pp. 969-977.

[43]   R. Bultitude, T.Schenk, N. Op den Kamp, N. Adnani, “A Propagation-Measurement-Based Evaluation of Channel Characteristics and Models Pertinent to the Expansion of Mobile Radio Systems to Frequencies Beyond 2 GHz”, in IEEE Trans. On Vehicular Technology, Vol. 52, March 2007, pp. 382-388.

[44]   M.H. Hashim, S. Stavrou, “Measurements and modelling of wind influence on radiowave propagation through vegetation”, in IEEE Transactions on Wireless Communications, Volume 5, Issue 5, pp. 1055–1064, May 2006.

[45]   K. Benzair, “Measurements and modelling of propagation losses through vegetation at 1-4 GHz”, in Antennas and Propagation, 1995. ICAP ’95. Ninth International Conference on (Conf. Publ. No. 407) Volume 2, 4-7 April 1995 pp. 54-59 vol.2.

[46]   J. Dalley, M. Smith, D. Adams, “Propagation losses due to foliage at various frequencies”, in Proc. National Conf. on Antennas and Propagation, March-April 1999, Conf. Pub. No. 461.

[47]   M.J. Gans, N. Amitay, Y.S. Yeh, T.C. Damen, R.A. Valenzuela, C. Cheon, J. Lee, “Propagation measurements for fixed wireless loops (FWL) in a suburban region with foliage and terrain blockages”, in IEEE Transactions on Wireless Communications, Volume 1, Issue 2, pp. 302–310, April 2002.

[48]   F. Wang, K. Sarabandi, “A Physics-Based Statistical Model for Wave Propagation Through Foliage”, in IEEE Transactions on Antennas and Propagation, Vol. 55, pp. 958–968, March 2007.

[49]   S.A. Torrico, R.H. Lang, “A Simplified Analytical Model to Predict the Specific Attenuation of a Tree Canopy”, IEEE Transactions on Vehicular Technology, Vol. 56, pp. 699-703, March 2007.

[50]   R. Zekavat ed. Handbook of Position Location: Theory, Practice, and Advances, First Edition - chapter 4. Wiley, 2012

[51]   S. Aguirre, L.H. Loew, and L. Yeh, “Radio Propagation into Buildings at 912, 1920, and 5990 MHz Using Microcells”, in Proc. 3rd IEEE ICUPC, pp. 129–134, October 1994.

[52]   

P.I. Wells, “The attenuation of UHF radio signals by houses”, in IEEE Transactions on Vehicular Technology, Vol. 26, Issue 4, Nov 1977. pp. 358–362.

[53]   E.F.T. Martijn, M.H.A.J. Herben, “Characterization of radio wave propagation into buildings at 1800 MHz”, in Antennas and Wireless Propagation Letters, Volume 2, Issue 1, pp. 122–125, 2003.

[54]   C. Oestges, A.J. Paulraj, “Propagation into buildings for broad-band wireless access”, in IEEE Transactions on Vehicular Technology, Volume 53, Issue 2, pp. 521–526, March 2004.

[55]   L.H. Loew, Y. Lo, M.G. Laflin, E.E. Pol, “Building Penetration Measurements From Low-height Base Stations At 912, 1920, and 5990 MHz”, NTIA Report 95-325, September 1995.

[56]   Ata, O.W., “In-building penetration loss modeling and measurement in suburban, urban and dense urban morphologies”, in Antennas and Propagation Society International Symposium, 2005 IEEE, 3-8 July 2005, pp. 779–782, Vol. 1A

[57]    H. Okamoto, K. Kitao, S. Ichitsubo, “Outdoor-to-indoor propagation loss prediction in 800-MHz to 8-GHz band for an urban area”, In IEEE Transactions on Vehicular Technology, v 58, n 3, pp. 1059–1067, 2009.

[58]   Y.P. Zhang, Y. Hwang, “Measurements of the characteristics of indoor penetration loss”, in VTC 1994. ‘Creating Tomorrow’s Mobile Systems’. 1994 IEEE 44th Vehicular Technology Conference, pp. 1741–1744 vol.3, 1994.

[59]   A. Davidson, C. Hill, “Measurement of building penetration into medium buildings at 900 and 1500 MHz”, IEEE Transactions on Vehicular Technology, Volume 46, Issue 1, Feb. 1997 pp. 161–168 .

[60]   A.F. de Toledo, A.M.D. Turkmani, J.D. Parsons, “Estimating coverage of radio transmission into and within buildings at 900, 1800, and 2300 MHz”, in IEEE Personal Communications, vol. 5, no. 2, April 1998 pp. 40–47 .

[61]   W. J. Tanis and G. J. Pilato, “Building penetration characteristics of 880 MHz and 1922 MHz radio waves”, in IEEE Veh. Technol. Conf. Proc., 1993, pp. 206–209.

[62]   R. Hoppe, G. Wolfle, F.M. Landstorfer, “Measurement of building penetration loss and propagation models for radio transmission into buildings”, in Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th, Volume 4, 19-22 Sept. 1999, pp. :2298 - 2302, vol.4.

[63]   Gahleitner, R.; Bonek, E.; “Radio wave penetration into urban buildings in small cells and microcells” Vehicular Technology Conference, 1994 IEEE 44th 8-10 June 1994 Page(s):887 - 891 vol.2

[64]   J.-E. Berg, “Building penetration loss along urban street microcells”, in Seventh IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1996, PIMRC’96., Volume 3, 15-18 Oct. 1996 pp. 795–797 vol.3.

[65]   A.M.D. Turkmani, J.D. Parsons, Feng Ju, D.G. Lewis, ”“Microcellular radio measurements at 900, 1500 and 1800 MHz”, Fifth International Conference on Mobile Radio and Personal Communications,11-14 Dec 1989 pp. 65–68.

[66]   C. Hill, T. Kneisel, “Portable Radio Antenna Performance in the 150, 450, 800, and 900 MHz Bands Outside and In-Vehicle”, in IEEE Transactions on Vehicular Technology, Volume 40, Issue 4, pp. 750–756, November 1991.

[67]   I. Kostanic, C. Hall, J. McCarthy, “Measurements of the Vehicle Penetration Loss Characteristics at 800MHz”, IEEE Vehicular Technology Conference, VTC 98, Ottawa, May 1998.

[68]   E. Tanghe, W. Joseph, L. Verloock, L. Martens, “Evaluation of Vehicle Penetration Loss at Wireless Communication Frequencies”, in IEEE Transactions on Vehicular Technology, Volume 57, Issue 4, pp. 2036–2041, July 2008.

[69]   S.Y. Seidel, “Path loss, scattering and multipath delay statistics in four European cities for digital cellular and microcellular radiotelephone”, in IEEE Transactions on Vehicular Technology, Volume 40, Issue 4, pp. 721–730, November 1991.

[70]   M.J. Feuerstein, K.L. Blackard, T.S. Rappaport, S.Y. Seidel, H.H. Xia, “Path loss, Delay Spread, and Outage Models as Functions of Antenna Height for Microcellular System”, in IEEE Transactions on Vehicular Technology, Vol. 43, No 3, pp. 487-498, August 1994.

[71]   V.S. Abhayawardhana, I.J. Wassell, D. Crosby, M.P. Sellars, and M.G. Brown, “Comparison of empirical propagation path loss models for fixed wireless access systems”, in Vehicular Technology Conference, Spring 2005, Volume 1, pp. 73–77, 30 May – 1 June 2005.

[72]   G.D. Durgin, T.S. Rappaport, and H. Xu, “Measurements and Models for Radio Path Loss In and Around Homes and Trees at 5.85 GHz”, in IEEE Transactions on Communications, Volume 46, No 11, pp. 1484–1496, November 1998.

[73]   J.W. Porter, I. Lisica, G. Buchwald, “Wideband mobile propagation measurements at 3.7 GHz in an urban environment”, in IEEE Antennas and Propagation Society International Symposium, Volume 4, pp. 3645–3648, 20-25 June 2004.

[74]   T. Rautiainen, K. Kalliola, J. Juntunen, “Wideband radio propagation characteristics at 5.3 GHz in suburban environments”, in Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 2005, PIMRC 2005, Volume 2, pp. 868–872, 11–14 September.

[75]   T. Schwengler, M. Gilbert, “ Propagation models at 5.8 GHz – path loss and building penetration”, in Proc. 2000 IEEE Radio and Wireless Conference, pp. 119–124, 10–13 September 2000.

[76]   W. Jakes, Microwave Mobile Communications, (New York: IEEE, 1974. Reedited Piscataway: IEEE Press, 1993), pp. 125-127.

[77]   D.M J. Devasirvatham, “Radio propagation studies in a small city for universal portable communications”, in Proc. 38th IEEE Vehic. Tech. Conf., 1988, pp.100104.

[78]   M.K. Simon, M.-S. Alouini, Digital Communications over Fading Channels, New York: John Wiley & Sons, 2000, ch. 2.

[79]   N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Volume 1, 2nd ed. (New York: John Wiley & Sons, 1994), ch. 17.

[80]   G. Tzeremes, C.G. Christodoulou, “Use of Weibull distribution for describing outdoor multipath fading”, in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), v. 1, 2002, pp. 232-235.

[81]   J. Wang, T.S. Ng, Ed. Advances in 3G Enhanced Technologies for Wireless Communications, (Artech House, 2002).

[82]   M. Gudmundson, “Correlation model for shadow fading in mobile radio systems”, Electronics Letters, vol. 27, no. 23, pp. 2145-2146, Nov 1991

[83]   X. Cai. “A Two-Dimensional Channel Simulation Model for Shadowing Processes”, in IEEE Trans. Vhic Tech, vol 52, no. 6, pp. 1558-1567, November 2003

[84]   A. Karttunen, A.F. Molisch, R. Wang, S. Hur, J. Zhang, J. Park, “Distance Dependence of Path Loss Models with Weighted Fitting”, IEEE Intl. Communications Conf., June 2016.

[85]   3GPP TR 25.996, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Release 11) [Online] www.3gpp.org/ftp/specs/archive/25_series/25.996/ (section 5.6 – correlation between channel parameters)

[86]   R.H. Clarke “A statistical theory of mobile radio reception”, Bell Syst. Tech. J. pp.957-1000, July/August 1968

[87]   L. Jinyi et al. “Experimental wideband spatial correlation measurements of low-height mobiles in outdoor urban environments”, in 2014 International Conference on Information and Communication Technology Convergence (ICTC), 2014, pp.854-857

[88]   P. Wilson et al, “Simultaneous wide-band four-antenna wireless channel-sounding measurements at 1920 MHz in a suburban environment”, in IEEE Trans. Vehic. Tech., 2001, vol.1, pp.67-78

[89]   A.M.D. Turkmani et al. “An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz”, in IEEE Transactions on Vehicular Technology, Volume: 44, Issue 2, pp.318-326, 1995

[90]   W.C.Y. Lee, “Mobile radio signal correlation versus antenna height and spacing”, in Trans Vehic Tech Volume: 26, Issue: 3, Aug. 1977, pp:290-292

[91]   N. Janssen et al. “An Investigation on the Correlation-Coefficient and Power Metrics for MIMO Antennas in a Reverberation Chamber”, URSI 2013

Backhaul

[92]   ITU-R Recommendation P.526-8, Propagation by diffraction, 2003.

[93]   ITU-R Recommendation P.452-12, Prediction procedure for the evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.7 GHz, 2007.

[94]   ITU-R Recommendation P.453-8, The radio refractive index: its formula and refractivity data, 2001.

[95]   ITU-R Recommendation P.530-13, Propagation data and prediction methods required for the design of terrestrial line-of-sight systems, 2009.

[96]   ITU-R Recommendation P.563-4, Radiometeorological Data, 1990.

[97]   ITU-R Recommendation P.676-8 Attenuation by Atmospheric Gases, 2009.

[98]   ITU-R Recommendation P.721-3 Attenuation by Hydrometeors, 1990.

[99]   ITU-R Recommendation P.837-5, Characteristics of precipitation for propagation modelling, 2007.

[100]   ITU-R Recommendation P.838-3, Specific attenuation model for rain for use in prediction methods, 2005.

[101]   R. Crane, Electromagnetic Wave Propagation Through Rain, New York: John Wiley & Sons, 1996.

[102]   R. Crane, Propagation Handbook for Wireless Communication System Design Hardcover, (CRC Press, 2003)

[103]   J. Wells, Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications, (Norwood, MA: Artech House, 2010)

Health hazards

[104]   A.F. McKinlay, S.G. Allen, R. Cox, P.J. Dimbylow, S.M. Mann, C.R. Muirhead, R.D. Saunders, Z.J. Sienkiewicz, J.W. Stather, and P.R. Wainwright, “Review of the Scientific Evidence for Limiting Exposure to Electromagnetic Fields (0-300 GHz)”, [online] http://grouper.ieee.org/groups/scc28/sc4/NRPB.limits_15_2.03.04.pdf, in Documents of the NRPB, Volume 15, No. 3, April 2004. [Online] www.osha.gov/SLTC/radiofrequencyradiation/healtheffects.html

[105]   FCC, “Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields”, OET Bulletin Number 56 (Fourth Edition August 1999). [Online] http://www.fcc.gov/encyclopedia/oet-bulletins-line#56

[106]   FCC, “Evaluating Compliance With FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields”, OET Bulletin No. 65 (August 1997). [Online] http://www.fcc.gov/encyclopedia/oet-bulletins-line#65

[107]   ANSI/IEEE C95.1, 1999 edition, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz”

Environment

[108]   How Green Are You?, Forrester, by Cindy Commander, Aug 2008.

[109]   Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2005. [Online] www.epa.gov/climatechange/emissions/usinventoryreport.html

[110]   “Towards a High-Bandwidth, Low-Carbon Future – Telecommunications-based Opportunities to Reduce Greenhouse Gas Emissions”, Climate Risk Pty Ltd., prepared for Telstra, 2007.)

[111]   Broadband Services: Economic and Environmental Benefits, American Consumer Institute (ACI) study, Oct 2007.

CDMA

[112]   J. S. Lee, L. Miller, CDMA System Engineering Handbook, (Boston, London: Artech House, 1998).

[113]   V. K. Grag, IS-95 CDMA and cdma2000, (Upper Saddle River, N.J.: Prentice Hall, 2000)

[114]   R. Steele, C. C. Lee, P. Gould, GSM, cdmaOne and 3G Systems, (Chichester, UK: Wiley, 2001).

[115]   A. J. Viterbi, CDMA : Principles of Spread Spectrum Communications, (Addison-Wesley, 1995).

[116]   R. Freeman, Radio System Design for Telecommunications, (New York: Wiley, 1997). P.752.

[117]   T. Ojanperä, R. Prasad, WCDMA: Towards IP Mobility and Mobile Internet, (Boston, London: Artech House, 2001).

[118]   T. Halonen, J. Romero, J. Melero, GSM, GPRS, and EDGE Performance, (Chichester, UK: Wiley, 2002). Ch. 14-15.

[119]   H. Holma, A. Toskala, WCDMA for UMTS - Radio Access for Third Generation Mobile Communications, second edition, (Chichester, UK: Wiley, 2002), ch.3 & ch. 6.

OFDMA

[120]   S.C. Yang, OFDMA System Analysis and Design, (Boston: Artech House, 2010).

[121]   R. van Nee, R. Prasad, OFDM Wireless Multimedia Communications, (Boston: Artech House, 2000).

[122]   U.S. Jha, R. Prasad, OFDM Towards Fixed and Mobile Broadband Wireless Access, (Boston: Artech House, 2007).

[123]   B. Bing, Emerging Technologies in Wireless LANs: Theory, Design, and Deployment, (New York, NY: Cambridge University Press, 2007)

[124]   E. Perahia, R. Stacey, Next Generation Wireless LANs: Throughput, Robustness, and Reliability in 802.11n, (New York, NY: Cambridge University Press, 2008)

[125]   IEEE Std 802.11ac, IEEE Standard for Information Technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, Draft 5.0 January 2013. [Online] http://standards.ieee.org/getieee802/802.11.html .

[126]   IEEE Std 802.11ad-2012, IEEE Standard for Information Technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. [online] http://standards.ieee.org/getieee802/download/802.11ad-2012.pdf

[127]   802.11af-2013 - IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Television White Spaces (TVWS) Operation. http://standards.ieee.org/findstds/standard/802.11af-2013.html

[128]   P802.11ah - Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment - Sub 1 GHz License-Exempt Operation. http://standards.ieee.org/develop/project/802.11ah.html

[129]   IEEE P802.11 – Status of IEEE 802.11 HEW Study Group http://http://www.ieee802.org/11/Reports/hew_update.htm

[130]   wirelessMAN.org. [Online] IEEE 802.16 Working Group on Broadband Wireless Access Standards.

[131]   S.A. Ahson, M. Ilyas, WiMAX: Standards and Security, (Boca Raton, FL: CRC Press, 2007).

[132]   IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems, October 2004. [Online] http://standards.ieee.org/getieee802/802.16.html .

[133]   IEEE Std 802.16/Conformance03-2004, IEEE Standard for Conformance to IEEE Std 802.16—Part 3: Radio Conformance Tests (RCT) for 10–66 GHz WirelessMAN-SC Air Interface, June 2004. [Online] http://standards.ieee.org/getieee802/802.16.html .

[134]   IEEE Std 802.16e-2005, IEEE Standard for Local and metropolitan area networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, February 2006. [Online] http://standards.ieee.org/getieee802/802.16.html .

[135]   WiMAX Forum (August 2006). “Mobile WiMAX - Part I: A Technical Overview and Performance Evaluation”. [Online] www.wimaxforum.org .

[136]   WiMAX Forum (May 2006). “Mobile WiMAX - Part II: A Comparative Analysis”. [Online] www.wimaxforum.org .

[137]   S. Pietrzyk, OFDMA for Broadband Wireless Access, (Norwood: Artech House, 2006).

[138]   J. Heiskala, J. Terry, OFDM Wireless LANs: A theoretical and Practical Guide, (Indianapolis, IN: Sams, 2002).

[139]   J. Zhang, C. Huang, G. Liu, P. Zhang. “Comparison of the Link Level Performance between OFDMA and SC-FDMA”, in: 2006 First International Conference on Communications and Networking in China, 25-27 Oct. 2006, pp. 1-6.

H.G. Myung, D.J. Goodman, Single Carrier FDMA – A New Interface for Long Term Evolution, (Wiley, 2008).

LTE

[140]   A. Ghosh, J. Zhang, J.G. Andrews, R. Muhamed, Fundamentals of LTE, (Prentice Hall, 2011).

[141]   M.T. Kawser, LTE Air Interface Protocols, (Artech House, 2011).

[142]   S. Sesia editor, LTE The UMTS Long Term Evolution, From Theory to Practice, (Wiley 2011).

[143]   3GPP LTE specifications [Online:] http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

[144]   C. Johnson Long Term Evolution In Bullets, 2nd edition, (2012). Companion site: www.lte-bullets.com

[145]   T. Schwengler, A. Paulson, “A review of public safety communications from LMR to voice over LTE (VoLTE)”, PIMRC September 2013, pp. 3513-3517.

[146]   A. Osseiran, J.F. Monserrat, P. Marsh 5G Mobile and Wireless Communications Theory, (Cambridge 2016).

[147]   J.T.J. Penttinen, The LTE-Advanced Deployment Handbook, (Wiley 2016).

[148]   E. Dahlman, S. Parkval, J. Skold 4G LTE-Advanced Pro and the Road to 5G, third edition, (Academic Press 2016).

[149]   M. Sauter From GSM to LTE-Advanced Pro and 5G, third edition, (Wiley 2017).

MIMO

[150]   A. Sibille, C. Oestges, A. Zanella, MIMO from Theory to Implementation, (Elsevier, 2011).

[151]   E. Biglieri et al., MIMO Wireless Communications, (Cambrige Univerity Press, 2007).

[152]   D. Gesbert, M. Shafi, D. Shiu, P. Smith, A. Naguib, “From Theory to Practice: An Overview of Mimo Space-Time Coded Wireless Systems” , in IEEE Journal on Selected Areas in Communications, vol. 21, No. 3, April 2003.

[153]   “Capacity of multiantenna Gaussian channels”, AT&T Bell Labs, Tech Memo, June 1995.

Wireless Performance

[154]   T. Schwengler, G. Stevens, C. Cook, “Municipal wireless systems RF ekistics”, Journal of Applied Science & Engineering Technology, Vol. 2, 2008. [Online] jaset.rit.edu

[155]   A. Adaikalam, M. Azad, C. Chen, J. Thomas, T. Schwengler, “Municipal Wireless Data Network in Longmont, CO”, in Proceedings of the third ACM international workshop on Wireless network testbeds, experimental evaluation and characterization 2008, San Francisco, California, September 2008.

[156]   C.F. Ball, E. Humburg, K. Ivanov, F. Treml, “Performance analysis of IEEE802.16 based cellular MAN with OFDM-256 in mobile scenarios”, in Proc. 2005 IEEE 61st Vehicular Technology Conference, VTC 2005-Spring, Volume 3, pp. 2061–2066, 30 May–1 June 2005.

[157]   F. Wang, A. Ghosh, R. Love, K. Stewart, R. Ratasuk, R. Bachu, Y. Sun, Q. Zhao, “IEEE 802.16e System Performance: Analysis and Simulations”, in Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 2005, PIMRC 2005, Volume 2, pp. 900–904, 11–14 September 2005.

[158]   J.A. Rice, Mathematical Statistics and Data Analysis Second Edition, (Belmont, CA: Duxbury Press, 1995).

[159]   T. Schwengler, N. Pendharkar, “Testing of fixed broadband wireless systems at 5.8 GHz”, in Proc. Technical, Professional and Student Development Workshop, 2005 IEEE Region 5 and IEEE Denver Section, pp. 32–38, April 2005.

Network

[160]   G. Christensen, R. Duncan, P. Florack, Wireless Intelligent Networking, (New York: Wiley, 2000). Ch. 3.

[161]   G. Camarillo, M.A. Garcia-Martin, The 3G IP Multimedia Subsystem, (Chichester: Wiley, 2004). Ch. 3.

[162]   Small cell forum, [Online:] http://www.smallcellforum.org – see ‘Resource’ tab.