
1

Improving the Accuracy of Random Waypoint Simulations

Through Steady-State Initialization*

William Navidi, Tracy Camp, and Nick Bauer,
Department of Math. and Computer Sciences

Colorado School of Mines
Golden, CO 80401

wnavidi, tcamp, and nbauer@mines.edu

Abstract— In simulations of mobile ad hoc networks,
the probability distribution governing the movement of
the nodes typically varies over time, and converges to
a “steady-state” distribution, known in the probability
literature as the stationary distribution. Some published
simulation results ignore this initialization discrepancy. For
those results that attempt to account for this discrepancy,
the practice is to discard an initial sequence of observations
from a simulation in the hope that the remaining values
will closely represent the stationary distribution. This
approach is not always reliable. If, however, the initial
locations and speeds of the nodes are chosen from the
stationary distribution, convergence is immediate and no
data need be discarded.

Many published simulation results of mobile ad hoc
networks use the Random Waypoint Mobility Model (the
RWM model). In this paper, we show how to implement
a steady-state mobility model generator (mobgen-ss) for
the RWM model. We then show, via simulation results,
that one is able to construct more reliable simulations for
mobile ad hoc networks with mobgen-ss. Our mobgen-ss
code is available at http://toilers.mines.edu.

Keyword: Simulations

I. INTRODUCTION

Mobile ad hoc networks are often studied through
simulation, and their performance can depend heavily
on the mobility model that governs the movement of the
nodes [5]. In most cases, the probability distributions
of the initial locations and speeds of the nodes differs
from the corresponding distributions at later points in
the simulation. In fact, it is generally true that the
probability distributions of both location and speed vary

*This work supported in part by NSF Grant ANI-0208352. Re-
search group’s URL is http://toilers.mines.edu. Reference for this
manuscript: Technical Report MCS-03-08, The Colorado School of
Mines, June 2003.

continuously over time, and converge to a “steady-
state” distribution, known in the probability literature
as the stationary distribution. At any given point in
the simulation, the distribution of location and speed
is a weighted average of the initial distribution and the
stationary distribution, with the weight shifting from the
initial distribution to the stationary distribution as the
simulation progresses.

Because the distributions of location and speed vary
as a simulation progresses, the performance of network
protocols can vary as well. In particular, network perfor-
mance early in a simulation may differ substantially from
the performance later in the simulation [19]. Up to now,
the primary method for dealing with this problem (when
the problem is addressed at all) has been to discard an
initial sequence of observations [6]. The hope is that
the values observed for location and speed past this
initial sequence will have been sampled approximately
from the stationary distribution. This approach has two
drawbacks. First, it is inefficient, since it requires the
discarding of data. Second, and more importantly, it is
difficult to know just how long a sequence one needs to
discard in order to be safely near stationarity. In fact, we
show that convergence can take more than 1000 seconds
of simulation time if the minimum speed is low.

We focus our discussion on the Random Waypoint
Mobility Model [4], [12] (the RWM model), since it
is the most common mobility model used in ad hoc
network simulations (e.g., [7], [9], [11], [14]). In this
model, each node is assigned an initial location (x0,y0),
a destination (x1,y1), and a speed S. The points (x0,y0)
and (x1,y1) are chosen independently and uniformly on
the region in which the nodes move. The speed is chosen
uniformly on an interval (v0,v1), independently of both
the initial location and destination. After reaching the
destination, a new destination is chosen from the uniform
distribution, and a new speed is chosen uniformly on



2

(v0,v1), independently of all previous destinations and
speeds. Nodes may pause upon reaching each destina-
tion, or they may immediately begin traveling to the
next destination without pausing. If they pause, the pause
times are chosen independently of speed and location.

Virtually all published simulation results that use the
RWM model begin with the nodes placed uniformly
in the simulation area. Of course, this initial random
distribution of nodes is not representative of the manner
in which nodes distribute themselves when moving. The
stationary distributions of location and speed in the
RWM model are in fact quite different from the uniform
distribution. In particular it has been noticed [3], [17],
[19] that the stationary distribution of the location of
a node is more concentrated near the center of the
region in which the nodes move, since nodes traveling
between uniformly chosen points spend more time near
the center than near the edges. Yoon et al. [19] noticed
that the stationary distribution of the speed differs from
the uniform as well, and showed in particular that if
the minimum speed v0 is taken to be 0, the mean node
speed approaches 0. A variant of the RWM model is
presented in [1], but the stationary distribution for this
model differs from the uniform as well.

One implementation of the RWM model (setdest for
NS2 [10]) begins with a pause at the initial location [4],
[16]. In other words, once the initial locations are uni-
formly chosen, simulations that use setdest have nodes
begin paused at their initial locations (the pause time is
a constant). Another implementation of the RWM model
(mobgen for NS2 [10]) begins with (approximately) half
the nodes moving and half the nodes paused [6] (the
pause time is chosen from a uniform distribution); thus,
for (approximately) half the nodes, the first pause occurs
upon reaching the first destination. For this reason,
simulations using setdest take longer to converge than
simulations using mobgen (see Section III).

In [5], the authors present three approaches to the
initialization problem. The first is to save the locations of
the nodes after a simulation has executed long enough
to be past the period of high variability, and use this
position file as the initial starting point of the nodes.
By creating many such position files, and starting each
simulation trial with a different one, each simulation
trial is started from a distribution close to stationarity.
The second approach, which is essentially equivalent to
the first, is to discard an initial number of seconds of
simulation time produced by the RWM model in each
simulation trial. The authors suggest that discarding 1000
seconds of simulation time (regardless of the node’s

speed) will ensure that the initialization problem is
removed. While this is true for many simulations, we
show below that convergence can take more than 1000
seconds of simulation time if the minimum speed is
low. This points out one of the difficulties with these
two approaches; it is difficult to know just how long
a sequence one needs to discard. The third approach
proposed in [5] is to assign initial positions and speeds
to the nodes according to the distribution they will come
to have over time, i.e., the stationary distribution.

In [15], we derive the stationary distributions for
speed, location, and pause time for a node moving in a
rectangular area under the RWM model. We note that
only the initial location and speed (and pause time,
if applicable) need to be sampled from the stationary
distribution; all subsequent node destinations, speeds
and pause times should be sampled from the uniform
distribution.

In this paper, we show how we’ve implemented a
steady-state mobility model generator (mobgen-ss) us-
ing the stationary distributions for the RWM model
developed in [15]. We then show, via simulation re-
sults, that one is able to construct more reliable sim-
ulations for mobile ad hoc networks with mobgen-
ss. Our mobgen-ss program (which is available from
http://toilers.mines.edu) can be used to generate
mobility files for two different simulators (both NS2
[10] and QualNet [18]) and for the interactive plotting
program gnuplot.

II. THE STEADY-STATE RWM MODEL

A. setdest and mobgen

When using setdest, without pausing, the user gives a
minimum and maximum speed (s0,s1) for nodes moving
in the simulation via the RWM model. The setdest
program then chooses a value s uniformly on the interval
(0,s1). If s ≥ s0, s becomes the speed. If s < s0, s0 is
chosen as the speed. Thus, for setdest, the mean initial
speed is

µ0,setdest =
s2

1 + s2
0

2s1
,

the steady state speed distribution is

fsetdest(s) =











1
lns1 − lns0 +1

s = s0

1
s(lns1 − lns0 +1)

s0 < s < s1

and the steady state average node speed is

µsetdest =
s1

lns1 − lns0 +1
.



3

When using mobgen, without pausing, the user also
gives a minimum and maximum speed (s0,s1) for nodes
moving in the simulation via the RWM model. The
mobgen program then uniformly chooses a speed, s, on
the interval (s0,s1). The mean initial speed is therefore

µ0,mobgen =
s1 + s0

2
,

the steady state speed distribution is

fmobgen(s) =
1

s(lns1 − lns0)

and the steady state average node speed is

µmobgen =
s1 − s0

lns1 − lns0
.

We note that, on average, nodes move more slowly
under setdest than under mobgen. We also note that the
average initial speed for both setdest and mobgen is con-
siderably greater than their corresponding steady-state
average. For this reason, the average speed decreases
from the initial value to the steady-state average in all
simulations that use setdest or mobgen. The time needed
for convergence to the steady-state average depends
largely on the minimum speed s0 [19]: the smaller s0,
the more time is needed for convergence. In Section III,
we show that more than 1000 seconds of simulation time
may be needed to reach steady state [15].

With setdest and mobgen, the spatial distribution of
the nodes changes over time as well. The initial distri-
bution is uniform on the network, and converges to a
distribution that is more concentrated in the center as
time passes [2], [3], [15].

While node speeds and locations are converging to
their steady-state distributions, values of performance
metrics for a given protocol, which are influenced by
the distribution of speed and location, are converging
to steady-state values as well. For this reason, when
using setdest or mobgen, network performance can vary
systematically with time, and measures of performance
gathered during the convergence period may not accu-
rately reflect long-term values.

The convergence period characteristic of setdest and
mobgen can be eliminated by choosing initial speeds and
positions from their corresponding steady-state distribu-
tion rather than from the uniform distribution [15]. In
this way, the speeds and locations have their steady-state
distributions from the start of the simulation. We refer
to this as the steady-state RWM model.

As mentioned, the setdest program chooses a speed,
s, uniformly on the interval (0,s1). If s ≥ s0, then s

becomes the speed. If s < s0, then s0 is chosen as the
speed. Since the mobgen program uniformly chooses a
speed on the interval (s0,s1), we derive the steady-state
model for mobgen instead of for setdest.

B. mobgen-ss Without Pausing

As discussed in Section I, the primary method for
dealing with the initialization problem of the RWM
model (if the problem is addressed at all) has been to
discard an initial sequence of observations. To avoid this
inefficiency in discarding data, it is only necessary to
sample the initial speed and location from their stationary
distributions. Subsequent speeds and locations should
then be sampled from the uniform distribution.

To choose the initial speed s, choose U uniformly on
(0,1), then let s = F−1(U) (where F−1(U) is the inverse
for the cumulative distribution function of the stationary
distribution of S), such that

F−1(u) =
su

1

su−1
0

. (1)

See [15] for details.

An initial location can be chosen in two simple steps:
choose an initial path and then choose a point on that
path uniformly. The probability density of any chosen
path is proportional to the expected time spent on that
path. Since the speed is independent of the path, the
expected length of time spent on any given path is equal
to the length of the path divided by the expected speed.
Thus, the probability density of any path is proportional
to its length. The initial path is therefore chosen by
choosing endpoints (x1,y1), and (x2,y2) in such a way
that the joint probability density of these two points is
proportional to the distance between them.

For the sake of simplicity, we assume that the network
region is the unit square. It is straightforward to adjust
the scaling to apply our results to any rectangular net-
work. For example, if the pause time is zero, the location
of the node in the unit square is (x,y), and the simulation
area is a rectangle of size 300 m × 600 m, then the
node’s location in the simulation area is (300x,600y).
For a non-rectangular region, the stationary distribution
of location will differ from that of a rectangular network,
and must be derived separately.

A convenient way to choose an initial location is by
rejection sampling. First choose two points (x1,y1) and
(x2,y2) uniformly on the unit square. Compute the length
of the path between these two points, and divide by the



4

length of the longest possible path, which is
√

2. Call
this quotient r. Generate a random uniform variable U
on (0,1). If U < r, then accept (x1,y1) and (x2,y2) as
the endpoints of the initial path. Otherwise, start over
again with new values of (x1,y1), and (x2,y2). Once the
endpoints of the path have been determined, the initial
location of the node is chosen at random uniformly from
the points on the path.

The following seven steps give a step-by-step sum-
mary of our procedure:

1) Generate (x1,y1), and (x2,y2) uniformly on the unit
square.

2) Compute r = [(x2 − x1)
2 +(y2 − y1)

2]1/2/
√

2.
3) Generate a random value U1 uniformly on (0, 1).
4) If U1 < r, then accept (x1,y1), and (x2,y2). Other-

wise, go to step 1.
5) Generate a random value U2 uniformly on (0, 1).
6) The initial location for the node on a unit square,

(x0,y0), is (U2x1 +(1−U2)x2, U2y1 +(1−U2)y2 ).
If (width,height) is the simulation area size, then
the initial location for the node on the simulation
area is (width∗ x0,height ∗ y0).

7) The node then travels to (width∗x2,height ∗y2) at
the initially chosen speed. Upon reaching (width∗
x2,height ∗y2), subsequent speeds and destinations
are chosen from the uniform distribution.

In our simulations, we rejected about 60% of the
candidates for the initial path. In other words, we had to
generate an average of 2.5 candidate paths for each node
to get an acceptable initial path. Since rejection sampling
is employed only for the initial path, and not for any
subsequent path, the extra time added to the simulation
was quite small.

C. mobgen-ss With Pausing

As discussed in Section I, simulations that use setdest
have nodes begin in a paused state and simulations that
use mobgen have (approximately) half the nodes begin in
a moving state1. To simulate the stationary distribution of
the RWM model with non-zero pause time, some nodes
should begin in a paused state and other nodes should
begin in a moving state. The percentage of nodes that
begin in a paused (moving) state depends on the values
of the simulation parameters. In other words, to begin a
simulation at the stationary distribution with pausing, the
first thing to do is to determine, for each node, whether

1For this reason, simulations using setdest take longer to converge
than simulations using mobgen (see Section III).

the node will begin in a paused state or in a moving
state.

To accomplish this goal, choose U uniformly on (0,1)
for each node. If U < Ppause the node will begin from
a paused state; otherwise it begins in motion. (Ppause is
the long-run proportion of time a node is paused. See
[15] for details.) If the node begins in motion, the pro-
cedure for choosing the initial position and speed are the
seven steps given in Section II-B for the implementation
without pausing.

If the node is to begin from a paused state, it is
necessary to determine the length of time, P0, of its
initial pause. To achieve stationarity, P0 must be the
length of time from a point chosen at random from
within a pause period until the end of that pause period.
Suppose h(p) denotes the probability density function of
the pause time P and H(p) is the cumulative distribution
function associated with h(p). By a fundamental result
in renewal theory [8], the cumulative distribution
function of P0 is

H0(p) =

∫ p
0 [1−H(t)]dt

E(P)
, (2)

where E(P) is the expected length of a pause.

To sample P0 from the cumulative distribution function
H0(p), it is necessary to compute the inverse H−1

0 . Then
choose U uniformly on (0,1) and let P0 = H−1

0 (U). The
initial position of a node that begins paused is chosen
uniformly on the simulation area. The node then remains
at this location for a length of time equal to P0. The initial
speed of the node, once the period P0 is over, is chosen
uniformly on (s0,s1).

As an example, suppose the pause time P is distributed
uniformly on (0,Pmax). The cumulative distribution func-
tion of P is then H(t) = t/Pmax for 0 < t < Pmax, and
E(P) = Pmax/2. Computing the integral in the above
equation yields

H0(p) = [2pPmax − p2]/P2
max. (3)

Inverting yields

H−1
0 (u) = Pmax(1−

√

1−u2). (4)

Therefore to choose P0, choose U uniformly on (0,1)
and let

P0 = Pmax(1−
√

1−U2). (5)



5

0 200 400 600 800 1000
6.5

7

7.5

8

8.5

9

9.5

10

10.5

Time

A
ve

ra
ge

 N
od

e 
S

pe
ed

Speed Range (5, 15), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
4

5

6

7

8

9

10

11

Time

A
ve

ra
ge

 N
od

e 
S

pe
ed

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

10

Time

A
ve

ra
ge

 N
od

e 
S

pe
ed

Speed Range (0.001, 19.999), Pause Time 0

Steady−state
Setdest
Mobgen

Fig. 1. Average node speed as a function of time for three mobility models.

0 500 1000 1500
0

50

100

150

200

250

300
Mobgen

0 500 1000 1500
0

50

100

150

200

250

300
Setdest

0 500 1000 1500
0

50

100

150

200

250

300
Steady State Model

Fig. 2. Locations of 50 nodes both initially (×) and after 500 seconds of movement (·).

III. SIMULATION RESULTS

A. Convergence of setdest, mobgen, and mobgen-ss

We demonstrate, via simulation results, that when the
minimum speed is low, setdest and mobgen can produce
unreliable performance metrics for a given protocol for
more than 1000 seconds of simulation time. The steady-
state model, on the other hand, produces metrics that
reflect long term performance accurately after just a few
seconds of simulation time.

1) Convergence of Average Speed: Figure 1 presents
the average speed of 50 nodes in a 1500×300 network,
plotted every 20 seconds for 980 seconds for setdest,
mobgen, and mobgen-ss (listed on the figures as “Steady-
state”). Speeds were chosen from three different ranges:
(5, 15), (1, 19), and (0.001, 19.999), with no pause time.
The figure shows that the average initial speeds for both
setdest and mobgen agree well with their theoretical
values. (See µsetdest and µmobgen in Section II-A.) For
example, for the speed range (5,15), the setdest average
initial speed is 8.333 m/s and the mobgen average initial
speed is 10 m/s.

For the speed ranges (5, 15) and (1, 19), the average
speed for both setdest and mobgen converge to their
steady-state values within 100-400 seconds of simu-
lation time. For example, for the speed range (1,19),
setdest converges to its steady-state average value (4.817
m/s) around simulation time 400 seconds and mobgen
converges to its steady-state average value (6.113 m/s)
around simulation time 300 seconds. For the speed range
(0.001, 19.999), the convergence is not complete, even
after 1000 seconds. (Our results are statistically signifi-
cant at the 5% level.) We note that such a small minimum
speed (i.e., 0.001) means that setdest and mobgen will
generate (almost) equivalent mobility patterns. In fact,
the steady state average node speed for the speed range
(0.001, 19.999) is 1.834 m/s for setdest and 2.019 m/s
for mobgen. Thus, when setdest and mobgen reach steady
state for the speed range (0.001, 19.999), their average
node speed should be (approximately) the average node
speed shown for mobgen-ss (i.e., the “Steady-state”
results in Figure 1).

For the steady-state model, the average speed is equiv-
alent to the mobgen steady state average node speed (i.e.,
µmobgen given in Section II-A) throughout the simulation



6

period for each of the speed ranges. As mentioned, the
steady state average node speed for the speed range
(0.001, 19.999) is 2.019 m/s.

2) Location Distribution: Figure 2 presents the loca-
tions of 50 nodes in a 1500×300 network, both after 1
second and after 500 seconds of movement, for setdest,
mobgen, and mobgen-ss. The speed range was (0.001,
19.999) with no pause time. Similar results (not shown)
would occur if we had done this for other speed ranges
and pause times.

We note that the number of nodes near the edge of
the network is much greater initially than after 500
seconds for both setdest and mobgen, reflecting the
difference between the initial uniform distribution and
the steady-state distribution that is eventually reached.
(Convergence of both setdest and mobgen to steady-state
locations is around 100 seconds [15].) When the initial
locations are chosen from the steady-state distribution,
however, the initial distribution does not differ in any
systematic way from the distribution after 500 seconds
of movement.

3) Convergence with Pausing: Sections III-A.1 and
III-A.2 consider the convergence of setdest, mobgen, and
mobgen-ss when pause time is equal to zero. If pause
time is set to be greater than zero, then the average speed
of setdest and mobgen is even slower. Thus, setdest and
mobgen will take even longer to converge to their steady
state values.

B. Routing Performance Comparison

We compare several performance characteristics of the
steady-state model to those of setdest and mobgen. We
show through simulations that when the initial speed s0

is sufficiently small, the performance characteristics of
setdest and mobgen vary systematically for more than
1000 seconds of simulation time. For larger values of
s0, the convergence time is shorter, and the performance
characteristics of setdest and mobgen stabilize more
quickly.

Our simulations involve a rectangular network with
dimensions 1500×300, 50 nodes, and 30 communicating
node pairs. Four 64-byte packets were sent by each
communicating node each second. See Table I for a
summary of our simulation parameters.

The routing protocol simulated was the Dynamic
Source Routing (DSR) [12], [13]. DSR is a source
routing protocol which determines routes on demand

TABLE I

SIMULATION PARAMETERS

Simulator NS2
Simulation time 1000s
Simulation area 1500m x 300m
Number of MNs 50
Transmission range 100m
Movement model random waypoint
Speed (1 m/s, 19 m/s) or (0.001 m/s, 19.999 m/s)
Pause time 0 or 30 s
CBR sources 30
Data payload 64 bytes
Packet rate 4 packets/s
Traffic pattern peer-to-peer

TABLE II

DSR CONSTANTS

Timeout for 1 hop route request 30 ms
Retransmit route request 500 ms
Size of header with n addresses 4n + 4 bytes
Buffer size 64 packets
Packet lifetime in buffer 30 s

[12]. In a source routing protocol, each packet carries
the full route (a sequenced list of nodes) that the packet
should be able to traverse in its header. In an on demand
routing protocol (or reactive protocol), a route to a
destination is requested only when there is data to send
to that destination and a route to that destination is
unknown or expired. In the evaluation of DSR, both [4]
and [11] only locate routes that consist of bi-directional
links. The version of DSR in our study also only locates
bi-directional links. In other words, a route reply packet
containing the complete route from S to D is sent along
the reverse route from D to S. A version of DSR from
[16] was used for our simulations. The constants chosen
for DSR’s parameters are the same as those used in [4]
and [11] (see Table II).

1) Steady-State Traffic Patterns Without Pausing: We
first show that performance metrics will be unreliable
for the first few simulation seconds, until traffic patterns
stabilize, regardless of the mobility model used. Figure 3
presents the number of routing packets transmitted, the
number of dropped data packets, and the average end-
to-end delay each second for the first 50 seconds of
simulation time. The speed range is (1, 19), with no
pausing. The behavior shown is similar for all three mo-
bility models. Routing packets transmitted and average
end-to-end delay fluctuate greatly during the first few
seconds as the initial packets are sent and routing tables



7

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

Time

R
ou

tin
g 

O
ve

rh
ea

d 
P

ac
ke

ts

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

Time

D
ro

pp
ed

 P
ac

ke
ts

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

A
ve

ra
ge

 D
el

ay

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

Fig. 3. Routing packets transmitted, dropped data packets, and average end-to-end delay for the first 50 seconds for three mobility models.

0 200 400 600 800 1000
40

60

80

100

120

140

160

Time

R
ou

tin
g 

O
ve

rh
ea

d 
P

ac
ke

ts

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
2

3

4

5

6

7

8

Time

D
ro

pp
ed

 P
ac

ke
ts

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

0.3

Time

A
ve

ra
ge

 D
el

ay

Speed Range (1, 19), Pause Time 0

Steady−state
Setdest
Mobgen

Fig. 4. Routing packets transmitted, dropped data packets, and average end-to-end delay for seconds 21 through 999 for three mobility
models.

are constructed. The results for dropped data packets do
not fluctuate as much, but appear to increase gradually
for the first 50 seconds or so. Similar results (not shown)
occurred for speed ranges (5, 15) and (0.001, 19.999)
when there was no pausing; the one exception is that
the number of dropped data packets did not increase for
quite as long for the speed range (0.001, 19.999).

These early fluctuations are not related to mobility;
they occur while the traffic pattern is stabilizing. How-
ever, if a simulation is executed long enough, the perfor-
mance results of a given protocol will reach steady state;
that is, these early fluctuations become insignificant if a
simulation executes long enough.

2) Performance Comparison Without Pausing: Fig-
ure 4 presents the number of routing packets transmitted,
the number of dropped data packets, and the average
end-to-end delay each second for seconds 21 through
999 of the simulation for the speed range (1, 19) with
no pausing. Values are plotted every 20 seconds. The
performance is about the same for all three mobility
models.

Figure 5 presents the number of routing packets
transmitted, the number of dropped data packets, and
the average end-to-end delay each second for seconds
21 through 999 of the simulation for the speed range
(0.001, 19.999) with no pausing. Values are plotted every
20 seconds. Again, we note that such a small s0 means
the mobility patterns generated by setdest and mobgen
are (basically) equivalent; thus, the performance of DSR
should be equivalent to mobgen-ss (shown as “Steady-
state” on the figures) if steady-state has been reached.

As shown in Figure 5, the performance for routing
packets transmitted and dropped data packets is stable
over time for the steady-state model, but varying sys-
tematically with time for setdest and mobgen, slowly
converging to that of the steady-state model. Even after
1000 seconds, the convergence is not complete. (These
results are statistically significant at the 5% level.) The
performance of the steady-state model is generally better,
because the average speed is slower. If the simulations
were continued beyond 1000 seconds, the performances
of setdest and mobgen would continue to improve, until
they matched the values of the steady-state method. For



8

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Time

R
ou

tin
g 

O
ve

rh
ea

d 
P

ac
ke

ts

Speed Range (0.001, 19.999), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time

D
ro

pp
ed

 P
ac

ke
ts

Speed Range (0.001, 19.999), Pause Time 0

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000

0.1

0.2

0.3

Time

A
ve

ra
ge

 D
el

ay

Speed Range (0.001, 19.999), Pause Time 0

Steady−state
Setdest
Mobgen

Fig. 5. Routing packets transmitted, dropped data packets, and average end-to-end delay for seconds 21 through 999 for three mobility
models.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

Time

R
ou

tin
g 

O
ve

rh
ea

d 
P

ac
ke

ts

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Time

D
ro

pp
ed

 P
ac

ke
ts

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Time

A
ve

ra
ge

 D
el

ay

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

Fig. 6. Routing packets transmitted, dropped data packets, and average end-to-end delay for the first 50 seconds for three mobility models.

average end-to-end delay, there does not seem to be any
time trends for any of the mobility models.

3) Steady-State Traffic Patterns With Pausing: Fig-
ure 6 presents the number of routing packets transmitted,
the number of dropped data packets, and the average end-
to-end delay each second for the first 50 seconds when
the speed range is (0.001, 19.999) with a constant pause
time of 30 seconds. The behavior during the first few
seconds is similar to the no-pause scenario and reflects a
brief period of traffic instability. The number of dropped
data packets becomes very small for setdest after about
5 seconds, and remains small until the 30th second. This
is due to the fact that the nodes begin in the paused state,
and remain there for the duration of the 30-second pause
time. In other words, for the first 30 seconds, setdest
produces a static, rather than a mobile, network; thus the
routing information learned during the first 5 seconds did
not become obsolete until 30 seconds had passed in the
simulation. After 30 seconds, the nodes begin moving,
and the performance of setdest quickly reverts to that of
mobgen.

4) Performance Comparison With Pausing: Figure 7
presents the number of routing packets transmitted, the
number of dropped data packets, and the average end-
to-end delay each second for seconds 21 through 999
for the speed range (0.001, 19.999) with a pause time of
30 seconds. Values are plotted every 20 seconds. Again,
such a small s0 means the mobility patterns generated by
setdest and mobgen are (basically) equivalent; thus, the
performance of DSR should be equivalent to mobgen-ss
if steady-state has been reached.

For routing packets transmitted and dropped data
packets, the performance is stable over time for the
steady-state model, but varying systematically with time
for setdest and mobgen, slowly converging to that of the
steady-state model. Even after 1000 seconds, the con-
vergence is not complete. (These results are statistically
significant at the 5% level.) For average end-to-end delay,
there does not seem to be any time trends for any of the
mobility models.



9

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Time

R
ou

tin
g 

O
ve

rh
ea

d 
P

ac
ke

ts

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time

D
ro

pp
ed

 P
ac

ke
ts

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

0 200 400 600 800 1000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

A
ve

ra
ge

 D
el

ay

Speed Range (0.001, 19.999), Pause Time 30

Steady−state
Setdest
Mobgen

Fig. 7. Routing packets transmitted, dropped data packets, and average end-to-end delay for seconds 21 through 999 for three mobility
models.

IV. CONCLUSIONS

Many published simulation results that compare mo-
bile ad hoc network routing protocols use the random
waypoint mobility model. To our knowledge, all of these
published simulation results began the simulations with
either all or (approximately) half of the nodes paused.
In addition, only a few of the published simulation
results discard an initial sequence of observations in the
hope that the remaining values will closely represent
the “steady-state” distribution of the RWM model. We
show, however, that convergence of the average speed
can take more than 1000 seconds of simulation time if
the minimum speed is low. Furthermore, due to this slow
convergence, the performance of a network protocol will
vary systematically with time. In other words, the per-
formance results are an artifact of how long a simulation
executes.

If, however, the initial locations and speeds of the
nodes are chosen from the stationary distribution, conver-
gence is immediate, no data need be discarded, and per-
formance results are reliable. We show how to implement
a steady-state mobility model generator (mobgen-ss) for
the RWM model. (Our mobgen-ss code is available at
http://toilers.mines.edu.) Our simulation results
stress the importance of using mobgen-ss, especially
when the minimum speed is small or when a non-zero
pause time is used. Since mobgen-ss is easy to use, we
encourage the MANET community to begin using it for
all their future simulations.

REFERENCES

[1] C. Bettstetter. Smooth is better than sharp: A random mobility
model for simulation of wireless networks. In Proceedings of
the Fourth ACM International Workshop on Modeling, Analysis

and Simulation of Wireless and Mobile Systems (MSWiM’01),
pages 19–27, 2001.

[2] C. Bettstetter, G. Resta, and P. Santi. The node distribution
of the random waypoint mobility model for wireless ad hoc
networks. Technical Report TUM-LKN 2002/01, Technische
Universität München, Institute of Communication Network,
2002.

[3] C. Bettstetter and C. Wagner. The spatial node distribution
of the random waypoint mobility model. In Proceedings of the
First German Workshop on Mobile Ad-Hoc Networks (WMAN),
GI Lecture Notes in Informatics, P-11, pages 41–58, 2002.

[4] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. Multi-
hop wireless ad hoc network routing protocols. In Proceedings
of the Fourth Annual ACM International Conference on Mobile
Computing and Networking (MobiCom 1998), pages 85–97,
1998.

[5] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research. Wireless Communications
& Mobile Computing (WCMC), 2(5):483–502, 2002.

[6] T. Camp, J. Boleng, B. Williams, L. Wilcox, and W. Navidi.
Performance comparison of two location based routing proto-
cols for ad hoc networks. In Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications
Societies (Infocom 2002), pages 1678–1687, 2002.

[7] C. Chiang and M. Gerla. On-demand multicast in mobile
wireless networks. In Proceedings of the IEEE International
Conference on Network Protocols (ICNP), pages 262–270,
1998.

[8] W. Feller, editor. An Introduction to Probability and its
Applications, Vol II, 2nd ed. John Wiley and Sons, 1970.

[9] J.J. Garcia-Luna-Aceves and M. Spohn. Source-tree routing
in wireless networks. In Proceedings of the 7th International
Conference on Network Protocols (ICNP), pages 273–282,
1999.

[10] Marc Greis and The VINT Group. Tutorial for the network
simulator - ns. http://www.isi.edu/nsnam/ns/tutorial/index.html.
Page accessed June 27th, 2003.

[11] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and
M. Degermark. Routing protocols for mobile ad-hoc networks -
a comparative performance analysis. In Proceedings of the Fifth
Annual ACM International Conference on Mobile Computing
and Networking (MobiCom 1999), pages 195–206, 1999.

[12] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In T. Imelinsky and H. Korth, editors, Mo-
bile Computing, pages 153–181. Kluwer Academic Publishers,
1996.



10

[13] D. Johnson, D. Maltz, and Y. Hu. The dynamic source routing
protocol for mobile ad hoc networks. Internet Draft: draft-ietf-
manet-dsr-09.txt, April 2003.

[14] Y. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile
ad hoc networks. In Proceedings of the Fourth Annual ACM
International Conference on Mobile Computing and Networking
(MobiCom 1998), pages 66–75, 1998.

[15] W. Navidi and T. Camp. Stationary distributions for the
random waypoint mobility model. Technical Report MCS-03-
04, Colorado School of Mines, 2003.

[16] The Rice Monarch Project. The Rice monarch extensions to
the ns simulator. http://www.monarch.cs.rice.edu/cmu-ns.html.
Page accessed on August 14, 2002.

[17] E. Royer, P.M. Melliar-Smith, and L. Moser. An analysis of the
optimum node density for ad hoc mobile networks. In Proceed-
ings of the IEEE International Conference on Communications,
pages 857–861, 2001.

[18] Scalable Network Technologies. Qualnet. http://www.scalable-
networks.com. Page accessed on June 27th, 2003.

[19] J. Yoon, M. Liu, and B. Noble. Random waypoint considered
harmful. In Proceedings of the Annual Joint Conference of the
IEEE Computer and Communications Societies (Infocom ’03),
2003.


